APS News

Gravitational Wave Observatories Open New Era in Astronomy

Teams report detection of neutron-star merger along with optical and gamma ray signals

October 16, 2017 | David Voss

Following closely the announcement of the 2017 Nobel Prize in Physics, the LIGO and Virgo collaborations reported on October 16 in Physical Review Letters that they have detected the coalescence of two neutron stars — objects of lower mass and much different in character from the black holes in the previously observed mergers.  Moreover, reports from about 70 ground — and space-based observatories confirm that a variety of electromagnetic signals — from gamma rays to radio waves — was detected as well. 

The gravitational wave signal, denoted GW170817, was first observed by LIGO and Virgo on August 17.  Researchers concluded that the inspiraling objects were in the range of 1.1 to 1.6 times the mass of the Sun, and thus were unlikely to be black holes.  This mass range corresponds to that of neutron stars, typically formed in the aftermath of supernova explosions.  The data indicated that the neutron-star merger took place some 130 million light years from Earth.


Map of the sky showing gravitational wave detections
LIGO/Virgo/NASA/Leo Singer/Axel Mellinger

Map of the sky showing gravitational wave detections. GW170817 is the most recent and was correlated with electromagnetic signals observed by around 70 ground- and space-based telescopes.


Black-hole mergers are expected to produce no electromagnetic signals, as these photons could not escape the grip of gravity.  Neutron-star collisions, however, could yield bright flashes across the electromagnetic spectrum.  And indeed, a gamma-ray burst was detected by NASA’s Fermi spacecraft and confirmed by the European Space Agency’s INTEGRAL space-borne detectors. 

The coordinates for the origin of the signal corroborated those from the LIGO/Virgo data.  Soon, follow-up observations by other telescopes revealed emissions at various wavelengths.  These results helped identify the merger as located in galaxy NGC 4993 in the Hydra Constellation.

“This detection opens the window of a long-awaited ‘multi-messenger’ astronomy,” said Caltech’s David H. Reitze, executive director of the LIGO Laboratory, in a press statement. “It’s the first time that we’ve observed a cataclysmic astrophysical event in both gravitational waves and electromagnetic waves — our cosmic messengers. Gravitational-wave astronomy offers new opportunities to understand the properties of neutr­on stars in ways that just can’t be achieved with electromagnetic astronomy alone.”

News Update Archive

View Archive


APS News

Read Current Issue


Recent News Update
APS Designates LIGO Labs as Historic Sites
In recognition of their immense importance in unlocking the mystery of gravitational waves, the two LIGO lab locations were honored on June 20.
2018 U.S. Physics Team Prepares for Portugal
Twenty of the top high school physics students from around the nation came together to train to be a part of the U.S. team traveling to the 2018 International Physics Olympiad.
2018 Kavli Prize Winners Announced
This year’s winners of the prestigious Kavli Prize in astrophysics, nanoscience, and neuroscience have been announced.
Homer Neal 1942-2018
Particle Physicist was the First African American President of APS
APS Celebrates Science of Light with Art
APS joins with OSA and AIP to support a one-of-a-kind display of art and technology.
2018 APS April Meeting Prize and Award Recipients
Special sessions to honor prize and award winners are held each year at the APS March and April Meetings. At this year’s APS April Meeting in Columbus, Ohio, 22 distinguished winners of APS prizes and awards were recognized.